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On effect modification and its applications 
 

In a deterministic universe component causes join 
hands to form a sufficient cause of an outcome. For 
example, the mutated gene for phenylalanine 
hydroxylase awaits the arrival of phenylalanine in the 
diet to complete a sufficient cause of mental 
retardation. When both are present in the baby’s 
body, the devastating outcome is inevitable—or so 
you may think. 
 
That viewpoint takes us to the deterministic idea of 
interaction: cause A (a mutated gene) interacts with 
cause B (amino acid intake) to bring about the effect 
C (mental retardation). Paradoxically perhaps, the 
word interaction also found home in frequentist 
statistics (interaction models), even though 
frequentist statistics is founded on chance-type 
probabilities, which resonate with indeterminism. 
 
Believers in determinism could have ended the story 
here, but a related term—effect modification—
disturbed their flawless image of interacting causes. 
Instead of assuming that a mutated gene (cause A) 
interacts with phenylalanine intake (cause B) to form 
a sufficient cause of mental retardation, we may 
assume that the risk of mental retardation, given 
genotype (variable A), varies according to 
phenylalanine intake (variable B)—and vice versa. For 
instance, the intake of phenylalanine may have null or 
negligible effects on mental retardation when the 
gene is normal, but may have strong effects 
otherwise. A new statistical model is not needed, 
either. The so-called interaction model may also be 
described as a model of effect modification. 
 
Faithful to interacting causes, deterministic writers 
struggle to inject some meaning into the term “effect 
modification”. Some of them downgraded it to 
“effect measure modification”; others confused it 
with “association modification”; and others tried to 
subsume it under the “consistency thingamajig” 
(commentary here). I have no idea why they bother. 
Subscribers to determinism should simply declare the 
term superfluous, because in a deterministic universe 
there are no modifiers, only “interactors”—the 
components of a sufficient cause. 
 
Just in case determinism is false and sufficient causes 
do not exist, let’s review some aspects of effect 
modification and explore its helpful consequences. 
 
First, the magnitude of effect modification (zero is 
magnitude, too) depends on the scale on which 
effects are measured, and the question of which scale 
is preferred under indeterminism, if any, awaits a 
solid analysis. The available literature is small and not 

particularly illuminating. It is possible that 
mathematical tools cannot fully reveal some aspects 
of causal reality, perhaps because the axioms of math 
are not sufficient for the task. 
 
Second, in methodology we often resort to a 
dichotomy between a non-null effect and a null 
effect, or between the presence and absence of 
effect modification. In deep science, however, the 
interesting questions are quantitative: What is the 
effect size? What is the magnitude of effect 
modification? Neither effects nor effect modification 
should be reduced to all-or-none phenomena. Again, 
methodological pieces (like this one) are exempt. 
 
Third and most important, I used to think that effect 
modification only requires two causal variables and 
some shared outcome.
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 I have now accepted the 

premise that only coinciding variables may be effect 
modifiers. Blood pressure now (Q1) may modify the 
effect of blood glucose now (E1) on stroke tomorrow 
(D2), but blood pressure an hour ago (Q0) does not 
modify any effect of blood glucose now (E1). Just as 
an unmodified effect operates between two time 
points (E1D2), so does a parallel modifier, Q1, of 
that effect (Q1D2). A modifier simply allows for two 
or more causal parameters within a single arrow. For 
example:   
 

E1D2|Q1=1    ≠    E1D2|Q1=0 
 
Read: the effect of E1 on D2 when Q1=1 is not identical 
to the effect of E1 on D2 when Q1=0 (given Q1D2) 
 
Figure 1 shows intuitive notation for effect 
modification. The arrow is supplemented with a 
lower-case letter, indicating dependency of the causal 
parameter on the modifier’s value at t=1. As shown in 
the figure, effect modification is a reciprocal 
phenomenon.
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Figure 1. Displaying effect modification 
 

 
According to these premises, the literature on effect 
modification by an intermediary (e.g., E1Q2D3, 
where Q2 is called “a modifier”) is a mathematical 
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exercise, rather than a description of causal reality—
analogous to the math of “treatment regime”, time-
dependent confounders, and change variables.

3,4
 Not 

every mathematical derivation that looks like science 
is science indeed. 
 

Effect modification and treatment 
 
Medical treatment often exploits the phenomenon of 
effect modification. Consider, for example, the 
symptom of heartburn (H), which may be caused by 
reflux (R) of acidic stomach fluid (A) into the 
esophagus, and may be treated by drugs (T) that raise 
the pH of stomach fluid. Figure 2 shows part of the 
causal structure for three time points. (The arrows 
R0R1 and A0A1 follow an axiom of causality.

3
) 

 
Figure 2. Causes and treatment of heartburn 

 
 
R1 and A1 are effect modifiers: In particular, the 
higher the acidity of stomach fluid (lower pH)—the 
stronger the effect of reflux on heartburn. To 
alleviate heartburn, we may try to raise the pH of 
stomach fluid, and to that end we turn to the causes 
of A1. One of these causes is treatment status (T0). 
 
But the treatment effect on stomach fluid acidity 
(T0A1) is also grounded in effect modification. 
Coinciding with T0 is the acidity level, A0, which is 
another cause of A1. As shown in Figure 2, T0 and A0 
are effect modifiers. Specifically, when T0=no 
treatment, the effect A0A1 is strong: if A0 takes the 
value “low pH”, A1 is also likely to take the value “low 
pH”. In contrast, when T0=proton pump inhibitor, the 
effect A0A1 is weak, and the treatment, T0, strongly 
affects A1 in the desired direction: A1 is likely to take 
the value “high pH” (even if A0 took the value “low 
pH”). Recall that the lower the acidity of stomach 
fluid—the weaker the effect of reflux on heartburn.  
 
To sum up, at least two modified effects underlie 
contemporary treatment of heartburn (and many 
other conditions). 
 

Effect modification and causal paths  
 
Quite often an arrow may be decomposed into 
several causal paths, some of which are specified 
through intermediary variables (eg, E0X1D2) and 
others may be summarized by a single arrow 
(E0D2), commonly miscalled “the direct effect”. 
 
I used to think that “partial effect”—the remainder 
effect after analytical exclusion of some causal 
path(s)—is a valid idea.
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 I have now accepted the 

premise that partial effects do not exist; their 
computation also crosses the boundary between 
causal reality and a mathematical exercise. To ask 
about the effect of weight at t=0 on stroke at t=2 —if 
blood glucose at t=1 would be fixed to 100mg/dL—is 
a human-made hypothetical, not causal reality. It has 
no place in indeterminism, and I am not sure that it 
fits well with determinism, either. 
 
Although partial effects do not exist, we may still be 
able to nullify causal paths that are not of immediate 
interest—exploiting again, effect modification. 
Double-blinded trials provide an example. 
 
Figure 3 shows how the effect of the offered 
treatment (TOFFER) on the outcome (D) may be 
decomposed into at least three paths: 1) through 
taking the treatment (TTAKE); 2) through expectation 
of benefit (E); and 3) through subsequent treatment 
by the physician (P). 
 
 
Figure 3. Causal paths for the offered treatment 
 

 
 
 
Whenever a new treatment is tested, we are not 
interested in its effect through the patient’s 
expectation or through subsequent treatment. We 
would like to estimate its effect when both of these 
paths are nullified, which requires modifiers of 
TOFFERE and TOFFERP. And that is exactly what 
double blinding is supposed to achieve (Figure 4). 
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Figure 4. Nullified causal paths in a blinded trial 
 

 
 
If neither the patient nor the physician knows what 
the patient is offered (B=blinded), the offered 
treatment should have a null effect on expectation of 
benefit (or harm) and on subsequent treatment. 
Therefore, the causal paths TOFFERED and 
TOFFERPD would not contribute to the association 
between TOFFER and D (Figure 4). Blinding is also 
expected to nullify some paths between the offered 
treatment and the analyzed outcome (not shown), 
and thereby reduce information bias. For instance, 
the offered treatment should not affect endpoint 
classification, if the classifier does not know which 
treatment was offered. 

 
Effect modification and confounding bias 
  
Confounding bias arises because the exposure (E1) 
and the disease (D2) share a cause (C0)—a confounder 
(Figure 5). The association between E1 and D2 is 
accounted for not only by the causal path, E1D2, but 
also by the confounding path, E1C0D2. 
 
Figure 5. Confounding bias 

 
 
A confounding path may be blocked by conditioning 
on the confounder, which dissociates the variable 
from both the exposure and the disease. But a 
confounding path may also be eliminated by finding a 
condition in which the confounder’s effect on the 
exposure (C0E1) is null. If the confounder C0 does 

not affect the exposure, one segment of the 
confounding path is absent, and E1 and D2 are no 
longer associated through C0. 
 
That C0E1 can be null in some conditions, but not in 
others, implies effect modification by at least one 
other cause of E1. A candidate modifier, R0, may be 
the mechanism by which exposure status is offered 
(Figure 6). 
 
Figure 6. Effect modification between a confounder 
and exposure assignment  

 
Whenever exposure status is offered at will, we 
assume that C0 has some effect on E1, so confounding 
bias is present. If, however, exposure status were 
truly offered by a random process (R0 = randomized) 
then C0 has a null effect on E1, by definition (Figure 7). 
In general, we assume that every confounder has a 
null effect on E1, given randomization, which implies 
that all confounding paths have been eliminated. 
Modification of the confounders’ effects on the 
exposure formally explains the well-known claim that 
confounding bias is absent from an intention-to-treat 
analysis of a randomized trial. 
 
Figure 7. Deconfounding by randomization 

 
 

Reality, however, is more complex. The outcome of a 
random process, as displayed on a monitor or paper, 
affects the offered treatment, but is not synonymous 
with the actual offering of a treatment. Which makes 
room for confounding bias: the offered treatment 
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and the disease it may affect could still share a 
cause.

5
 An intention-to-treat analysis of a randomized 

trial indeed reduces sources of confounding bias, but 
does not guarantee its absence. 
 
I wondered whether it is also possible to eliminate 
confounding by finding a parallel situation where the 
confounder’s effect on the disease is modified by 
some cause of the disease (Figure 8). 
 
Figure 8. Effect modification between the confounder 
and some cause of the disease 
 

 
 
Although a parallel idea of randomized disease does 
not exist, the answer is, yes—if only theoretically. 
Some modifier (Z0) might have a value (z0) that 
nullifies the component of the causal association 
between C0 and D2 that complements the path 
C0E1D2 (Figure 9). If we happen to restrict the 
modifier to that value—lucky conditioning—the 
confounding path no longer exists. Unfortunately, the 
associational condition is unpredictable, and luck is 
not counted among the methods of research. 
 
Figure 9. Theoretical deconfounding by conditioning 
 

 
 

 
 
Effect modification and colliding bias 
 
Unlike confounding bias, colliding bias can arise by 
several causal structures, the simplest of which 
requires a shared effect (S3) of the exposure (E1) and 

the disease (D2). Following conditioning on S3, a new 
component is often added to the association between 
E1 and D2 (Figure 10).  
 
Figure 10. Colliding bias 
 

 
 
In many examples S3 is selection status, a binary 
variable that takes the value “selected for the study” 
or “not selected”. Since only the selected people are 
eventually studied, conditioning on S3 is inherent in 
research and would lead to colliding bias if coupled 
with the structure E1S3D2. The colliding arrows 
themselves might arise through intermediaries that 
are beyond our control or through erroneous 
selection criteria. 
 
Although no study is free of selection criteria—a 
potential source of colliding bias—we may be able to 
prevent some colliding bias by finding a modifier of a 
colliding arrow into S3 (Figure 11). 
 
Figure 11. Effect modification between two causes of 
selection status, one of which is affected by the 
exposure 
 

 
A candidate modifier is the sampling method (R). 
When sampling follows a random process, the path 
E1VS3 may be nullified for some V (Figure 12), 
preventing colliding bias through that variable. 
 
Figure 12. Preventing colliding bias by random 
sampling 
 

 

C0

D2

Z0

C0

E1 D2

Z0
=z0

S3

E1 D2

S3

E1 D2

R

V

=random sampling

S3

E1 D2

V

R



Commentary 

 

5 

 

 
It is interesting to compare random sampling with 
randomization, two ideas that the novice tends to 
confuse. Randomization can remove confounding 
bias, whereas random sampling can prevent colliding 
bias. Randomization is expected to block all existing 
paths of confounding bias, whereas random sampling 
is expected to prevent some paths of colliding bias 
that would have otherwise arisen—say, by an 
erroneous selection rule. In both cases, however, the 
benefit is gained by conditioning on a modifier: the 
mechanism by which exposure status is offered 
(randomization), or the mechanism by which people 
are selected (random sampling). 
 

Effect modification and information bias 
 
Much of science is pursued in a parallel world of 
measured variables, or more precisely—“imputed 
variables”: the values that your software analyzes 
when you click “run”, “enter”, or whatever. The 
causal paths that take us from the variable of interest 
(V) to its imputed version (VIMPUTED) are long and 
complex,

6
 and it is unclear which intermediary, if any, 

deserves the title “the measurement of V”. We will 
ignore that complexity, however, and consider an 
arbitrary intermediary (V*). In many cases V* is a 
cause of the analyzed variable (Figure 13), although 
there are other methods to arrive at VIMPUTED.
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V* has many causes, one of which is obviously V, the 
variable that is being measured (VV*). Other causes 
are technical variables (M1, M2, M3….) that denote 
possible measurement methods. Figure 13 depicts 
them collectively as m; their many effects on V* are 

displayed by a single arrow with a three-pronged tail. 
 
Figure 13. Causes of VIMPUTED  
 

 
 
To choose a method for measuring V* is to condition 
on the variables that make up m. But we do not 

condition arbitrarily. We prefer a method 
(equipment, protocol, training, and so on) for which 
the effect VV* is assumed to be strong rather than 
weak (Figure 14), hoping that the values of V* will 
closely match the values of V. Effect modification 
between V and the makers of m formally explains 

what we mean by “a better measurement of V”. 
 
 

 
Figure 14. Choosing a measurement method 
 
 

 
 

 
Two remarks 
 
Modified effects serve us well in various 
circumstances: choosing treatment, nullifying causal 
paths that are not of immediate interest, 
deconfounding, preventing some colliding bias, and 
reducing information bias. It is difficult to find 
another feature of causal reality that offers so much, 
except causality itself. 
 
In most of the examples the modified effect was null 
for some value of the modifier and non-null 
otherwise. Again, the dichotomy between null and 
not null simplifies methodological discussions, but 
may be relaxed. It makes little difference, for 
instance, whether a confounding path is precisely 
nullified or is sufficiently weakened by randomization. 
Likewise, it is not that important whether the causal 
path from the offered treatment to the patient 
expectation is precisely nullified by blinding or only 
nearly so. In an indeterministic world, the pair “to 
modify” and “to not modify”—just like the pair “to 
cause” and “to not cause”—is a simple-minded 
descriptor of a continuous phenomenon. Whether 
referring to effect or to effect modification, the 
precise null is no more than another point on a 
continuum—hardly worthy of the attention it gets 
(commentary here). 
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